Rapid Classification of Crisis-Related Data on Social Networks using Convolutional Neural Networks

نویسندگان

  • Tien Dat Nguyen
  • Kamla Al-Mannai
  • Shafiq R. Joty
  • Hassan Sajjad
  • Muhammad Imran
  • Prasenjit Mitra
چکیده

The role of social media, in particular microblogging platforms such as Twitter, as a conduit for actionable and tactical information during disasters is increasingly acknowledged. However, time-critical analysis of big crisis data on social media streams brings challenges to machine learning techniques, especially the ones that use supervised learning. Scarcity of labeled data, particularly in the early hours of a crisis, delays the machine learning process. The current stateof-the-art classification methods require a significant amount of labeled data specific to a particular event for training plus a lot of feature engineering to achieve best results. In this work, we introduce neural network based classification methods for binary and multi-class tweet classification task. We show that neural network based models do not require any feature engineering and perform better than state-of-theart methods. In the early hours of a disaster when no labeled data is available, our proposed method makes the best use of the out-of-event data and achieves good results. Keywords-Deep learning, Neural networks, Supervised classification, Social media, Crisis response

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Robust Classification of Crisis-Related Data on Social Networks Using Convolutional Neural Networks

The role of social media, in particular microblogging platforms such as Twitter, as a conduit for actionable and tactical information during disasters is increasingly acknowledged. However, time-critical analysis of big crisis data on social media streams brings challenges to machine learning techniques, especially the ones that use supervised learning. The scarcity of labeled data, particularl...

متن کامل

Provide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery

Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...

متن کامل

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

Decision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks

Introduction: Age-related macular degeneration (AMD) is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.03902  شماره 

صفحات  -

تاریخ انتشار 2016